If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+38x+40=0
a = 7; b = 38; c = +40;
Δ = b2-4ac
Δ = 382-4·7·40
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-18}{2*7}=\frac{-56}{14} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+18}{2*7}=\frac{-20}{14} =-1+3/7 $
| 7x^2+38+40=0 | | 7/3x1x=-21 | | 21=w/3-8 | | 109=k10 | | -3=2(3-b)-b | | |4x|=8 | | 8v-4=-7(v-8) | | 0=2d+-8 | | c/10+92=100 | | 2(x+5)=3x+20 | | 5m2+2m-24=0 | | -20=4d-8 | | =3v−245v | | 12–11f=-12f | | 3.7+10m=8.84 | | 7/3x+16=-5 | | 4+2x=8-3x | | 4(3x+5=(-4) | | q/6-3=1 | | 6(m-1)=393m+5) | | 6-2+8g=-8+10g | | 28=x–(–5) | | x/27=2 | | 24=2(l(1/4)+1)+2l | | 3x+(-23)=28 | | 8(d+4)=56 | | -35=-7/4w | | 212x−34(2x+5)=38 | | 2x^2=3(x^2-6)+2 | | 7/5=p+7/4 | | 2.4+w=–1.9 | | 7n−1.1=6 |